Research to Business
Offer: 560

Electronics from the printer

High-speed field effect transistors built up of layers of nanomaterials can be produced. cost-effectively by printing.

Due to the structure of the field effect transistor consisting of superimposed layers, the width L of the channel is not limited by the print resolution.

If it were possible to print electronic components simply on paper or film, intelligent packages could be produced at low cost, for instance. Printed electronics is an attractive proposition also for all large-area applications, such as wallpaper equipped with light emitting diodes, or films fitted with solar cells for use on windows and façades.

State of the art

Electronics produced by printing at present employs mostly organic semiconductor materials which, however, tend to be decomposed over time. Moreover, these components are not fast enough for use in sophisticated applications.


KIT scientists of the Institute of Nanotechnology (INT) have found possibilities to increase the speed and longevity of printed electronics, especially of field effect transistors (FET). These transistors, core components in many integrated circuits, consist of a source, a drain, and a gate. Source and drain are connected by a channel made up of a semiconducting material. The gate electrode, which controls the current between the source and the drain, is applied to a non-conducting material (dielectric).


The field effect transistor developed at the KIT contains nanoparticles of an inorganic semiconductor material, which constitute the channel. The dielectric is an electrolyte which is liquid when applied, penetrates into the pores of the channel, and later is cured, becoming a transparent solid. A voltage applied between the source and the gate builds up an electric field which causes electric three-dimensional double layers to be produced on the surfaces of the semiconductor nanoparticles. This allows three-dimensional control and a layered structure, which is advantageous in high-speed transistors. A field effect transistor is the faster the narrower the channel between the source and the drain. If the component is to be made by printing, the minimum width of the channel is limited by the resolution of the printing process, which is around 20 µm. However, in a design consisting of various layers, only some 10 nm wide layers can be printed on top of each other.

Options for companies

The KIT is looking for partners interested in further developing and practically applying this technology.

Your contact person for this offer

Dr. Rainer Körber, Karlsruhe Institute of Technology (KIT)
Innovation Manager, Innovation and Relations Management (IRM)
Phone: +49 721 608-25587


Add offer to watch list

Watch list

No offers listed yet

This site uses third-party website tracking technologies to provide its services. I agree to this and can revoke or change my consent at any time with effect for the future.