
Beschreibung

[0006] Humanmedizinische Implantate mit mechatronischen Elementen werden üblicherweise in hermetisch dichten Gehäusen gekapselt.

[0008] Befinden sich temperaturempfindliche Komponenten im System, so muss während der Prozessierung darauf geachtet werden, dass sie keinen hohen Temperaturen ausgesetzt werden, z. B. während des Fügeprozesses des Gehäuses, bei dem die Komponenten bereits eingebaut sind.

[0015] Polymere sind nicht hermetisch dicht und können somit ein Eindringen oder Austreten von Stoffen an der Klebestelle z. B. durch Diffusion nicht über längere Zeit verhindern. Zusätzliche Maßnahmen sind hierzu erforderlich, die im Klebstoff über die gesamte Länge mindestens eine die Fuge überbrückende Diffusionssperre vorsehen. Eine mögliche Ausführung sieht zumindest eine Diffusionssperre vor, die beidseitig durch Klebstoff abgedeckt ist, d. h. diese befindet sich im Klebstoffvolumen.

[0016] Bevorzugt ist der Klebstoff dabei als Getter konzipiert. Der Klebstoff ist oder enthält hierzu ein Getter-Material, d. h. einen chemisch aktiven, beispielsweise einen hygroskopischen Stoff (z. B. Salze, Zeolith, Silikagel etc.). Er übernimmt dabei die Funktion eines Wasserspeichers, indem er diese Moleküle einlagert und chemisch bindet. Die so gebundenen Moleküle sind für das interne System unschädlich.

der Sicherstellung eines Abstands bei der Verklebung der Komponenten, d. h. bei der Herstellung der Dichtung.

[0023] Durch Ausbildung der dichten Beschichtung als Vielagerschiicht kann die Rissausbildung und -ausbreitung in der Beschichtung durch Quellung unterbunden und so lange Dichtigkeit gewährleistet werden. Insbesondere erfolgt bei der Rissbildung und Rissausbreitung eine spannungsaufbauerende Rissablenkung in Richtungen bevorzugt parallel zu der Beschichtung und damit auch eine Verlängerung möglicher Diffusionswege.

[0025] Wird die Spannung weiter erhöht, so reißt die nächste Hartstoffschiicht nicht im gleichen Bereich wie die darüberliegende Hartstoffschiicht. Der Riss und damit der Diffusionsweg werden über die spannungsausgleichende Polymerschiicht entlang der Schichtebe ne verlängert.

[0027] Durch die vorgenannten Maßnahmen wird eine hermetische Abdichtung der Fuge bzw. eines Gehäuses erreicht.

[0028] Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen erläutert, die optional auch mit einzelnen oder allen vorgenannten Maßnahmen zusätzlich kombinierbar oder erweiterbar ist. Es zeigen

[0029] Fig. 1a bis e beispielhafte Ausführungen einer hermetischen Dichtung, die zwei Gehäuseiteile miteinander verbunden und das Gehäuseinnenvolumen vor Umgebungseinflüsse schützt.

[0030] Fig. 2 eine hermetisch dichte Durchführung einer Leitung.

[0031] Fig. 3a und b beispielhafte Ausführungsformen der Dichtung mit im Klebstoff eingemischten Getter-Materialien.

[0032] Fig. 4a und b beispielhafte Ausführungsformen der Dichtung mit kaskadenförmig angeordneten abdichtenden und bindenden Schichten oder Diffusionsperren zum Verhindern eines Eindringens einer schädlichen Substanz.

[0033] Fig. 5 eine Detailansicht einer Fuge mit Multilayerbeschichtung.

[0034] Fig. 6 eine weitere Ausführungsform der Dichtung mit je einer Ausgleichsnut an den beiden freien Klebstoffoberflächen sowie

[0035] Fig. 7a bis c beispielhafte Gehäuse mit Dichtungen für ein künstliches Akkommodationssystem.

[0036] Die Fig. 1 bis Fig. 6 geben Detailschnittzeichnungen der Dichtung einer Fuge zwischen zwei Komponenten wie Gehäuseiteile eines Gehäuses wieder. Die Gehäuseiteile, die wie beispielhaft dargestellt ein Gehäuse 1 und ein Gehäusedeckel 2 umfassen, sind jeweils aus einem hermetisch dichten Material hergestellt. Vorzugsweise ist das Gehäuseinnere 3 vor Einflüssen der Umwelt 4 außerhalb des Gehäuses zu schützen. Die Dichtung befindet sich in der Fuge 5 zwischen den beiden Gehäuseiteilen. Sie umfasst einen polymeren Klebstoff 6 in der Fuge sowie mindestens eine Beschichtung 7 aus Metall oder Glas, die auf den beiden genannten Komponenten sowie der Klebstoffoberfläche einseitig bzw. beidseitig aufliegt und die Fuge vollständig überspannt. Der Kleb-
stoff ist und/oder enthält ein Getter-Material, d. h. ein chemisch aktives Material mit der Eignung zur An
einer Einbindung von Molekülen insbesondere Wasser durch chemische Bindung, Adsorption, Adhäsion
oder Diffusion. Vorzugsweise verschließt der Gehäusesockel eine Öffnung im Gehäuse unter Bild
zung einer umlaufenden Fuge vollständig. Eine wei
tere Ausführung sieht ein mehrkomponentiges Gehäuse vor, wobei sich die Fugen zwischen jeweils
mindestens zwei Komponenten erstrecken und auch Verzweigungen und Kreuzungen bilden können. In
jedem Fall überbrückt die Dichtung die Fuge in ihrer gesamten Länge.

[0037] Das genannte Gehäuse ist bevorzugt ein Gehäuse eines künstlichen Akkommodationssystems, das als Implantat in ein Auge eingesetzt ist. Mögliche Ausführungen hierzu sind in Fig. 7a bis c wiedergegeben.

[0038] Ein künstliches Akkommodationssystem ist ein mechtronisches Mikrosystem, mit dem die auf
grund von Presbyopie oder nach einer Katarakt-Ope
ration verloren gegangene Akkommodationsfähigkeit wiederhergestellt werden soll. Das Implantat beinhalt
et eine aktive Optik, die sich an die Gegenstands
weiten verschiedener vom Patienten fokussierter Objekte anpasst. Dazu wird zunächst der Abstand zum Objekt mit Hilfe eines Sensorsystems bestimmt. Die
se Information wird in einer Steuerungseinheit aus
wertet und an den Aktor weitergeleitet, der die akti
ve Optik anpasst. Das System ist abgeschlossen und arbeitet autonom. Die Energie muss drahllos über

[0039] Das künstliche Akkommodationssystem wird wie eine Intraokularlinse in den Kapselsack implan
tiert. Aufgrund dessen benötigt es eine Sensorein
heit, die den Akkommodationsbedarf aus dem Inneren
nen des Auges heraus erfassen kann. Mit Hilfe dieser Information kann die aktive Optik in ihrer Brechkraft auf die vom Patienten benötigte Fokuslänge eingestellt werden.

[0040] Dem Gehäuse eines Akkommodationssy
tems kommt die Aufgabe zu, Wasser und andere schädliche Substanzen am Eindringen in das Mikro
system zu hindern. Zudem muss ein Austausch von visuellen und nicht visuellen Daten und/oder Energie über die Gehäusewandung hinweg realisierbar sein. Ferner benötigt die Optik entsprechende transparente Durchtrittsf lächen, die einen Lichtstrahl im bevor
zugt sichtbaren Lichtbereich ohne oder nur mit ge
ngen optischen Manipulationen durchlässt.

[0041] Hierfür weist das Gehäuse einer Ausfüh
rungsform eine zylinderförmige Gestalt mit zwei plan
parallel zueinander angeordneten Stirnflächen auf
(Fig. 7a und b). Eine alternative bevorzugte Ausfüh
rungsform eines Gehäuses mit Innenhohlräumen für ein System sieht zwei transparente und gegeneinander ausgerichtete Halbschalen 25 ähnlich Uhrenläscher, die zusammen eine Linsenform bilden vor, die an ihren Umfängen unter Bildung des Hohlrums her
metisch dicht miteinander verklebt sind (Fig. 7c). Ei
ne optische Transparenz des Gehäuses, vorzugswei
se zumindest der beiden vorgenannten Stirnflächen oder Uhrenläscher sind hierzu erforderlich. Ein Aus
tausch von nicht visuellen Steuerungsdaten erfolgt
vorzugsweise mittels elektromagnetischer Informationen ohne Leitungen, alternativ über die Gehäuse
wandung überbrückende Übertragungsleitungen, wie sie beispielhaft in Fig. 2 wiedergegeben sind.

[0042] Fig. 1a zeigt beispielhaft eine Dichtung mit ei
ner nach außen hin gewölbten freien Klebstoffober
fläche 9 (vgl. auch Fig. 1d und e, Fig. 2, Fig. 3a und b sowie Fig. 4a und b). Die zur Umgebung 4 weisen
dele Klebstoffoberfläche ist mit einer Beschichtung ver
sehen, die sich über die gesamte freie Klebstoffober
fläche und über die angrenzenden freien Komponentenoberflächen 8 erstreckt. Diese Ausführung eignet sich insbesondere dann, wenn ein Betriebszustand eine Erweiterung der Fuge 5 bewirkt, wobei eine Ver
größerung der freien Klebstoffoberfläche 9 und damit der Beschichtung 7 durch ein nach innen in die Fuge Ziehen verringert wird. Die Dehnung der Beschich
tung und damit die Reißgefahr werden damit in vor
teilhafter Weise reduziert.

[0043] Fig. 1b zeigt den gleichen Aufbau der Dich
tung, jedoch mit einer nach innen hin gewölbten frei
nen Klebstoffoberfläche 9 (Kehlnut, vgl. auch Fig. 1c).
Die Fläche einer nach innen hin gewölbten freien
en Klebstoffoberfläche reduziert sich in vorteilhafter
Weise bei einer Quellung des Klebstoffs 6. Die Quellung bewirkt nicht nur eine Fugenverbreiterung und damit grundsätzlich eine Dehnung auch der Be
schichtung, sondern auch ein Herausquellen von festem Klebstoff aus der Fuge, deren nach innen ge
mölbte freie Oberfläche nach außen gedrückt wird und der genannten Dehnung der Beschichtung ent
gegengewirkt. Diese Entlastung der Beschichtung führt zu einer Reduzierung des Versagensrisikos. Fol
glich eignet sich diese Ausführung insbesondere dann, wenn die Gefahr eines Reißens der Beschichtung bei einer Quellung des Klebstoffs vermieden werden soll.

[0044] Alternativ kann man dieser durch Quellung hervorgerufenen Gefahr eines Beschichtungsversa
gens mit einem Druckunterschied beidseitig der Dich
tung entgegenwirken. Dieser wird realisiert, indem

[0045] Eine weitere Möglichkeit, dieser durch Quellung hervorgerufenen Gefahr eines Beschichtungsversagens entgegenzuwirken, besteht in der Gestaltung der Fuge mit einer Nut in mindestens einer der angrenzenden Komponenten, was sich über die gesamte Länge der Dichtung erstreckt. Fig. 1c zeigt eine solche Gestaltung mit einer umlaufenden Nut 21 im Gehäusedeckel wieder, wobei die Nut der zusätzlichen Aufnahme von Klebstoffvolumen und damit Gettermaterial dient. Die Nut dient dabei als eine Ausgleichsnut. Optional sind Ausgleichsnuten 24, die nahe der Klebstoffoberfläche angeordnet sind (vgl. Fig. 6), wodurch sich in vorgenannter Weise auch eine Entlastung der Beschichtung 7 ergibt.

[0046] Eine optionale zusätzliche Feder 22 greift in diese Nut ein (Fig. 1d) und bewirkt einen Führung und im Falle einer Quellung eine gegeneinander seitlich auf die Federflächen wirkende Kraft. Die Feder wird damit in der Nut eingespannt, womit es zu einer zusätzlichen Festigung der Bindung zwischen der Komponenten 1 und 2 kommt. Optional werden Feder und Nut als Schwalbenschwanzpassung vorgesehen, wobei die vorgenannten Kräfte eine resultierende Kraft erzeugen, die die Komponenten gegeneinander drücken und ein beispielhaft zusätzlicher Abstandshalter 23 einen festen Abstand zwischen Nutgrund und Federkopf und damit der Fuge einstellt (Fig. 1e). Der für alle Ausführungen optionale, aber beispielhaft nur in Fig. 1e gezeigte Abstandshalter stellt eine allgemeine Maßnahme dar und ist als Partikel oder Formkörper entweder separat eingesetzt oder an mindestens einer Komponente angeformt.

[0047] Fig. 2 zeigt eine Durchführung einer Übertragungsleitung 10 durch die Fuge. Die Übertragungsleitung wird in der Fuge vollständig von Klebstoff 6 ummantelt. Die Beschichtung 7 erstreckt sich nicht nur auf die freie Klebstoffoberfläche und den angrenzenden freien Komponentenoberflächen, sondern auch auf die angrenzende Oberfläche der Übertragungsleitung. Optional sind nicht weiter dargestellte Führungsmittel wie eine nutförmige Erweiterung der Fuge oder Führungselemente wie z. B. Abstandshalter der vorgenannten Art für die Übertragungsleitung vorgesehen.

[0048] Fig. 3a und b zeigen beispielhaft Ausführungsformen von Dichtungen mit Materialkombinationen, die nicht nur durch den vorgenannten einseitig beschichteten Klebstoff in der Fuge, sondern auch durch weitere Materialien gebildet werden. Ziel ist, ein Optimum zwischen dem Abdichten, d. h. dem Verhindern des Eindringens von Wasser, sowie dem Binnen der eingeruderten Wassermoleküle im Inneren des Systems zu erreichen. Fig. 3b zeigt beispielhaft eine Kombination eines Klebstoffs 6 mit Getterfunktion im äußeren Bereich und einer zusätzlichen Barriere 13 zum inneren Bereich des zu schützenden Systems hin. Fig. 3a zeigt beispielhaft den Einsatz deiner zusätzlichen Barriere aus einem Polymer 12 mit sehr geringer Wasseraufnahmefähigkeit, z. B. Epoxidharz (z. B. EPO-TEK 354-T), das ebenfalls als Klebstoff eingesetzt wird, hinter der Diffusionssperre. Fig. 3b zeigt eine gehäuseinnenseitige zusätzliche Beschichtung 13 aus einem hermetisch dichten Material, die zusätzlich aufgebracht wird. Beide Varianten beschreiben eine Dichtung mit mindestens zwei hintereinander angeordneten Materialien, einem polymeren Klebstoff mit Getter-Eigenschaften und einem Material ohne Getter-Eigenschaften, das aber eine hermetische Abdichtung bewirkt. Beide Materialien überbrücken die Fuge in ihrer gesamten Länge. Vorzugsweise ist der zusätzliche Dichtstoff (Polymer 12) in der Fuge im zur Umwelt 4 angrenzenden Bereich hinter der Diffusionssperre, während das andere Material mit Getter-Eigenschaft im gehäuseinnenseitigen Bereich der Fuge angeordnet ist.

[0049] Das Getter-Material bindet eindringende Wassermoleküle 14, ohne dass sich ein Gleichgewicht mit dem Inneren des zu schützenden Systems einstellt, da beide durch eine zusätzliche Barriere getrennt sind (Fig. 3b). An dieser baut sich ein osmotischer Druck auf, der je nach Permeabilität des Barriermaterials nur langsam zur Diffusion des Wassers ins Systeminnere führt.

[0050] Eine Variation ist das Einbringen von weiteren Getterschichten 19 (vgl. Fig. 4a) und Barriere Schichten 20 (vgl. Fig. 4b). Die Dichtung umfasst somit mehrere hintereinander angeordnete Schichten aus Klebstoff 6 sowie Getter-bzw. Barrierschichten, wobei alle Schichten sich über die gesamte Länge der Fuge erstrecken und auch vorzugsweise jeweils auch beide angrenzenden Komponenten mit einander dichtend verbinden. Die Barrierschichten sind vorzugsweise aus einem dichten Kunststoff ohne Gettereigenschaften, während die Getterschichten eine gegenüber dem Klebstoff 6 erhöhte spe-

[0051] Fig. 5 zeigt beispielhaft einen Schnitt eines Schichtsystems mit einer Viellagenschicht 26. Diese besteht aus einer Anzahl von aufeinander angeordneten Einzelschichten aus hermetisch dichtem Material 27 wie Glas, Metall oder Hartstoff (in Fig. 5 dunkle Schicht) und aus plastischen vorzugsweise fließfähigen Material 28 wie Kunststoff (in Fig. 5 helle Schicht). Die genannten Einzelschichten liegen wie vorgenannt vorzugsweise in abwechselnder Reihenfolge aufeinander, wobei die nach außen weisende obere Schicht bevorzugt eine Einzelschicht aus hermetisch dichtem Material ist.

[0052] Vorzugsweise ist der Randbereich 29 der Viellagenschicht auf den Komponenten (Gehäuse 1 und Gehäusedeckel 2) angeordnet, wobei vorzugsweise die jeweils oberen Einzelschichten die Ränder der jeweils darunter angeordneten Einzelschichten mit überdeckt. Damit ist nur die oberste Einzelschicht als Deckschicht zu der Atmosphäre hin exponiert. Die Deckschicht ist vorzugsweise eine hermetisch dichte Schicht, z. B. aus Glas, Metall oder Hartstoff.

[0053] Ein hermetisch dichtes Gehäuse 1 für ein künstliches Implantat besteht vorzugsweise aus einem Rohrstück 15, auf deren beiden Enden jeweils durch eine Scheibe als Gehäusedeckel 2 vorzugsweise aus Glas verschlossen ist (vgl. Fig. 7a). In einer bevorzugten Ausführung umfasst dieses Rohrstück mehrere axiale und/oder (wie dargestellt) radiale elektrisch leitfähige biokompatible Rohrsegmente 16 (z. B. aus Titan oder einem anderen biokompatiblen Metall), die über jeweils elektrisch isolierende hermetische Dichtungen 19 der vorgenannten Art gegen einander elektrisch isoliert sind. Jedes Rohrsegment ist von beiden Seiten, d. h. von innen und außen elektrisch kontaktierbar, d. h. jedes Segment ist als elektrische Leitung in oder aus dem Gehäuse nutzbar. Das Rohrstück wird vorzugsweise in eine Rohmmanschette 17 mit innenliegenden elektrischen Kontakten und einer der mehreren Anschlussleitungen 18 eingespannt (vgl. Fig. 7b), wobei die Rohrsegmente von außen über die Kontakte elektrisch kontaktiert werden. Die Anschlussleitungen lassen sich zur Verankerung des Akkommodationssystems im Auge oder auch als Antennen für eine weiterführende Signalübertragung aus dem Auge nutzen. Die Rohrsegmente sowie alle elektrisch leitfähigen elektrischen Kontakte sind vorzugsweise durch die Manschette gegenüber der Umgebung elektrisch isoliert. Eine separate Isolierung dieser Kontakte gegenüber der Umgebung ist nicht zwingend erforderlich und aufgrund des Bau raumes nicht praktikabel.

[0054] Eine weitere Ausführung sieht vor, ausgehend von Fig. 7a und b das Rohrstück 15 und die Manschette 17 mit den Anschlussleitungen 18 zu einer Komponente zusammenzufügen sowie zu den Gehäusedeckeln 2 und nach außen zur Umgebung hin z. B. mit einer Beschichtung hermetisch abzudichten.

[0055] Eine Manschette z. B. mit umlaufender Innen V-Nut für die formschlüssige Aufnahme der aufeinander liegenden Ränder der Halbschalen 25 des Gehäuses ist auch grundsätzlich für die Fig. 7c dargestellte Ausführung optional möglich und ggf. sinnvoll. Die umlaufende Nut bildet hier in vorteilhafter Weise einen zusätzlichen Schutz und eine zusätzliche Barriere für die Dichtung in der Fuge. In Fig. 7c nicht dargestellt sind optional in die Fuge einlegbare Verankerungsarme und/oder Anschlussleiten, die wie beispielhaft in Fig. 2 wiedergegeben im Klebstoff 6 eingebettet und fixiert werden.

Literatur:

[0056]

[1] DE 10 2006 003 223 A1

Bezugszeichenliste

1 Gehäuse
2 Gehäusedeckel
3 Gehäuseinneres
4 Umwelt
5 Fuge
6 Klebstoff
7 Beschichtung
8 Komponentenoberfläche
9 freie Klebstoffoberfläche
10 Übertragungsleitung
11 Polymer
12 Zusätzliche Beschichtung
13 Wassermolekül
15 Rohrstück
16 Rohrsegment
17 Kontaktmanschette
18 Anschlussleitung
19 Geterschicht
20 Barriere
21 Nut
Patentansprüche

1. Dichtung einer Fuge (5) zwischen zwei Komponenten (1, 2), umfassend
 a) einen polymeren Klebstoff (6) in der Fuge, der die Fuge über ihre gesamte Länge überbrückt, wobei der Klebstoff ein Getter-Material ist oder enthält sowie b) mindestens eine Beschichtung (7) aus Metall, Hartstoff oder Glas, die auf den beiden Komponenten sowie der Klebstoffoberfläche einseitig oder beidseitig aufliegt und die Fuge vollständig überspannt.

2. Dichtung nach Anspruch 1, dadurch gekennzeichnet, dass eine oder beide Komponenten angrenzend an die Fuge (5) über die gesamte Länge eine Nut aufweisen.

4. Dichtung einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Beschichtung (7) aus Metall eine aufgedämpfte oder gesputterte Titanbeschichtung ist oder umfasst.

5. Dichtung einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass die Beschichtung (7) durch einen Schichtverbund mit alternierenden Lagen aus Metall oder Hartstoff und Kunststoff gebildet wird.

7. Dichtung nach einem der vorgenannten Ansprüche, dadurch gekennzeichnet, dass der Klebstoffoberfläche mit der Beschichtung nach innen gewölbt ist und eine umlaufende Kehlnut bildet.

Es folgen 4 Blatt Zeichnungen